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S1 Additional Analysis

S1.1 Visualization of four coronaviral NSP6s in membrane

Figure S1 is the visualization of four NSP6 proteoforms of SARS-CoV, Bat-SL-RaTG, Bat-SL-CoVZC45, and
Bat-SL-BM48-31. These proteoforms are consistent with that of SARS-CoV-2 described in the main paper,
indicating their similar function of regulating cell autophagy.

Figure S1: The visualization of NSP6 proteoforms for a few species close to SARS-CoV-2. (a) SARS-CoV, (b) Bat-SL-RaTG13, (c)
Bat-SL-CoVZC45, and (d) Bat-SL-BM48-31.
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(a) (b)

(c) (d)

(e) (f)

Figure S2: Network analysis of the SARS-CoV-2 NSP6 L37F mutation. The networks consist of heavy atoms of mutation site 37 and
Cα atoms of SARS-CoV-2 NSP6. The differences of descriptors between the network with wild type, leucine, and the network with
mutant type, phenylalanie, are displayed. (a) FRI rigidity index differences; (b) eigencentrality differences; (c) subgraph centrality
differences; and (d) betweenness centrality differences. In (e) and (f), relative changes versus cutoff distances to the mutation site
are studied. (e) relative changes of FRI rigidity index, path length, edge density, betweenness centrality, and eigencentrality; and (f)
relative changes of subgraph centrality, communicability, and communicability angle.

S1.2 Network analysis of the SARS-CoV-2 NSP3 L37F mutation

Figure S2 shows the network analysis of the SARS-CoV-2 L37F mutation. The networks are constructed by
heavy atoms at the mutation site and at the Cα atoms of SARS-CoV-2 NSP6. Figures S2 (a), (b), (c), and
(d) present the mutation-induced differences of FRI rigidity index differences, eigencentrality differences,
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subgraph centrality differences, and betweenness, respectively. Although these descriptors do not change
much globally, their local changes around the mutation site reveal the L37F mutation-induced stress around
the mutation site.

Figures S2 (e) and (f) show the dependence of relative changes over cutoff distances. First of all, every
descriptor converges as the cutoff distance increase. Relative changes do not fluctuate for cutoff distance
greater than 24 Å. The relative change of FRI rigidity index monotonically decreases in absolute value as the
cutoff increases. Similarly, the edge density has a monotonically decreasing pattern. The two networks are
close in the path length descriptor. Interestingly, betweenness centrality descriptor has the largest difference
at 10 Å cutoff distance, while the eigencentrality descriptor has the largest difference at 22 Å cutoff distance.
For betweenness centrality, it shows that the mutation has the largest impact in the network of Cα within
10 Å to any atoms of the target residue. In Figure S2 (f), three descriptors show a similar pattern — they
increase in absolute value first and then decrease eventually as the cutoff increases. Overall, the relative
change plots indicate that the mutation happening at L37 has the largest impact on the Cα within 10 Å to
any atoms of the target residue.

S2 Material and Methods

S2.1 Data collection and pre-processing

On January 5, 2020, the complete genome sequence of SARS-CoV-2 was first released on GenBank (Access
number: NC 045512.2) by Zhang’s group at Fudan University [21]. Since then, there has been a rapid
accumulation of SARS-CoV-2 genome sequences. In this work, 20,656 complete genome sequences with
high coverage of SARS-CoV-2 strains from the infected individuals in the world were downloaded from the
GISAID database [17] ( https://www.gisaid.org/) as of June 19, 2020. All the records in GISAID without
the exact submission date were not taken into considerations. To rearrange the 20,656 complete genome
sequences according to the reference SARS-CoV-2 genome, multiple sequence alignment (MSA) is carried
out by using Clustal Omega [18] with default parameters.

The amino acid sequence of NSP6 is downloaded from GenBank [1]. The three-dimensional (3D) struc-
ture of nonstructure protein 6 (NSP6) in this work is generated by I-TASSER model [23]. The 3D structure
graph is created by using PyMOL [7].

S2.2 Single nucleotide polymorphism genotying

Single nucleotide polymorphism (SNP) genotyping measures the genetic variations between different mem-
bers of a species. Establishing the SNP genotyping method to the investigation of the genotype changes
during the transmission and evolution of SARS-CoV-2 is of great importance [19, 24]. By analyzing the re-
arranged genome sequences, SNP profiles, which record all of the SNP positions in teams of the nucleotide
changes and their corresponding positions, can be constructed. The SNP profiles of a given SARS-CoV-2
genome isolated from a COVID-19 patient capture all the differences from a complete reference genome
sequence and can be considered as the genotype of the individual SARS-CoV-2.

S2.3 Topology-based prediction of protein folding stability changes upon mutation

In this work, the prediction of NSP6 folding energy changes upon mutation is computed by using the
topology based mutation predictor (TML-MP) ( https://weilab.math.msu.edu/TML/TML-MP/) which is
briefly reviewed as following and its detail can be found in the literature [3]. TML-MP applies element
specific persistent homology, which reveals essential biological information [5,8]. The method employs the
element-specific persistent homology [4] and other biological and chemical properties as machine learning
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features to train gradient boosted regression tree (GBRT) models. The dataset includes 2648 mutations
instances in 131 proteins provided by Dehouck et al [6]. The error analysis based on the dataset is given
as Pearson correlations coefficient (Rp) of 0.79 and root mean square error (RMSE) of 0.91 kcal/mol from
previous work [3].

As the persistent homology widely applied in a variety of practical feature generation problems, it is
also successful in the implementation of predictions of protein folding energy changes upon mutation. The
key idea in TML-MP is to use the element-specific persistent homology (ESPH) which distinguishes differ-
ent element types of biomolecules when building persistent homology barcodes. For instance, commonly
occurring protein element types include C, N, O, S, and H. However, hydrogen atoms are often absent from
PDB data and sulfur atoms are too few in most proteins to be statistically important. Thus, C, N, and O
elements are considered on the ESPH in protein characterization. As for persistent homology, barcodes
generated based on ESPH provide a topological representation of molecular interactions. Features are ex-
tracted from the different dimensions of persistent homology barcodes by dividing barcodes into several
equally spaced bins, which is called binned barcode representation. The auxiliary features such as geom-
etry, electrostatics, amino acid types composition, and amino acid sequence are also included for machine
learning training.

The element specific persistent homology is built by adopting the distance function DI(Ai, Aj) describ-
ing the distance between two atoms Ai and Aj defined as

DI(Ai, Aj) =

{
∞, if Loc(Ai) = Loc(Aj),

DE(Ai, Aj), otherwise,
(S1)

where Loc(·) denotes the location of an atom which is either in a mutant site or in the rest of the protein
andDE(·, ·) is the Euclidean distance between the two atoms. Then, the persistent homology uses simplicial
complexes with a specific rule such as Vietoris-Rips complex, Cech complex, or alpha complex. Vietoris-
Rips complex (VC) is used for characterizing first-order interaction where alpha complex (AC) is used
for characterizing higher-order patterns. Using ESPH to characterize interactions of different kinds, we
construct persistent homology barcodes on the atom sets by selecting one certain type of atoms in mutation
site and one other certain type of atoms in the rest of the protein. The set of barcodes from one persistent
homology computation as V p,d,bγ,α,β where

• p ∈ {VC,AC} is the complex rule,

• d ∈ {DI,DE} is the distance function,

• b ∈ {0, 1, 2} is the topological dimensions,

• γ ∈ {M,W} is the protein of mutant type or wild type,

• α ∈ {C,N,O} is the element type selected in proteins except in the mutation site,

• β ∈ {C,N,O} is the element type selected in the mutation residue.

These barcodes are capable of reflecting the molecular mechanism of protein stability. Features are ex-
tracted from the groups of persistent homology barcodes. For 18 groups of Betti-0 ESPH barcode such that
9 groups are from the mutant type and 9 groups are from the wild type, one can specify a fixed length
interval to divide the ESPH barcodes into a number of equally spaced bins. For example, a length set,
{[0, 0.5], (0.5, 1], ..., (5.5, 6]Å} would turn the 18 groups of Betti-0 ESPH barcode into 18*12 features with
dimension of the number of atoms. The death and birth of bars are counted in each bin resulting in fea-
tures. Therefore, this representation enables us to precisely characterize hydrogen bonds, van der Waals,
electrostatic, hydrophilic, and hydrophobic interactions. For the higher-order Betti numbers, the emphasis
is given on patterns of both short and long-distance scales. Statistics feature are computed for each group
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of barcodes for Betti-1 and Betti-2, which are sum, max, and the average of bar length, and max and min
of birth and death values. Overall, 12*18 features are generated by Betti-0 on VC, and 7*2*18 features are
generated by Betti-1 and Betti-2 on AC.

In TML-MP, gradient boosted regression trees (GBRTs) [14] are employed to train the dataset according
to the size of the training dataset, absence of model overfitting, non-normalization of features, and ability
of nonlinear properties. The GBRT method produces a prediction model as an ensemble method which is a
class of machine learning algorithms. It builds a popular module for regression and classification problems
from weak learners. By the assumption that the individual learners are likely to make different mistakes,
the method uses a summation of the weak learners to eliminate the overall error. Furthermore, a decision
tree is added to the ensemble depending on the current prediction error on the training dataset. Therefore,
this method is relatively robust against hyperparameter tuning and overfitting, especially for data with a
moderate number of features. The GBRT is shown for its robustness against overfitting, good performance
for moderately small data sizes, and model interpretability. The current work uses the package provided
by scikit-learn (v 0.23.0) [16].

S2.4 Graph network models

The graph network descriptors are briefly presented which are applied in this work. Graph networks can
mimic interactions between pairs of units in molecules. The quantify features of the networks can reveal
the biological and chemical properties measured by comparing descriptors on different networks. To detect
the single residue impact following mutation, the network consists of a set S(r) of Cα atoms from every
residue of protein structure except the target mutation residue where r is the cutoff distance such that a Cα
atom is included if it is within r Å to any atom of the target mutation. The total atom set T (r) is defined as
the atoms (C, N, and O) of the target residue and Cα atoms of S(r). Moreover, two vertices are connected
in the network if their distance is less than 8 Å. Thus the adjacency matrix A can be defined as well where
A is a matrix containing 0 and 1 such that A(i, j) = 0 if i-th and j-th are disconnected and A(i, j) = 1 if i-th
and j-th are connected.

S2.4.1 FRI rigidity index

FRI rigidity index was introduced to reflect the flexibility between atoms for molecular interaction predic-
tion [15, 22]. The single residue molecular rigidity index measures its influence on the set S(r) which is
given as

Rη =

NS∑
i=1

N∑
j=1

e−
( ‖ri−rj‖

η

)2
, (S2)

where NS is the number of Cα atoms of the set S(r) and N is the number of atoms in total atom set T (r).

S2.4.2 Edge density

Edge density is defined based on the adjacency matrix of the total atom set T (r) such as

d =
1

NS

N∑
i=1,i/∈IT

N∑
j=1

A(i, j), (S3)

where IT is the index set of the mutation residue.

S2.4.3 Average path length

Average path length measures the separation between two vertices of the whole network, which can be
used to study infectious diseases spreading in the networks [20]. The average path length for the single
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mutation system of biomolecular is defined as

〈L〉 =
1

2NS(N − 1)

N∑
i=1,i/∈IT

N∑
j=1

d(i, j), (S4)

where d(i, j) is the shortest path length between vertices vi and vj .

S2.4.4 Average betweenness centrality

Average betweenness centrality shows communications in a network [13]. The average betweenness cen-
trality is given as

〈Cb〉 =
1

NS

N∑
k=1,k/∈IT

N∑
i=1

N∑
j=i+1

gkij
gij
, (S5)

where gkij is defined as the number of the shortest path between vertices vi and vj that passes vk, and gij is
the number of shortest paths between vi and vj .

S2.4.5 Average egeincentrality

Average egeincentrality is the average of elements of the eigenvector Vmax, which is corresponding to the
largest eigenvalues of the adjacency matrix [2] such as

〈Ce〉 =
1

NS

N∑
i=1,i/∈IT

ei. (S6)

S2.4.6 Average subgraph centrality

Average subgraph centrality is built on the exponential of the adjacency matrix, E = eA. The subgraph
centrality is the summation of weighted closed walks of all lengths starting and ending at the same node [9,
12]. Thus the average subgraph centrality reveal the average of participating rate of each vertex in all
subgraph, which is given as

〈Cs〉 =
1

NS

N∑
i=1,i/∈IT

E(i, i). (S7)

S2.4.7 Average communicability

Average communicability is defined in a similar way as the subgraph centrality on the exponential of the
adjacency matrix [9–11], which is

〈M〉 =
1

NS(N − 1)

N∑
i=1,i/∈IT

N∑
j=1

E(i, j), (S8)

S2.4.8 Average communicability angle

Average communicability angle is given by [11]

〈Θ〉 =
1

NS(N − 1)

N∑
i=1,i/∈IT

N∑
j=1

θ(i, j), (S9)

where θ(i, j) = cos−1
(

E(i,j)√
E(i,i),E(j,j)

)
.
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S3 Supplementary Tables

Total 16 spreadsheets are merged in the Supporting Tables.xlsx.

Table S1: S1 snpRecords 10192020 All: The GISAID IDs in the world (Up to October 19, 2020).

Table S2: S2 snpRecords 101912020 11083G>T: The GISAID IDs in the world with 11083G>T-(L37F). (Up to
October 19, 2020).

Table S3: S3 Transmission 11083G>T: The date that the 11083G>T-(L37F) was first collected in 75 countries (Up
to October 19, 2020).

Table S4: S4 11083G>T ratio: The ratio of 11083G>T in 75 countries (Up to October 19, 2020).

Table S5: S5 CountryDate 11083G>T 14days: The 11083G>T counts of 75 countries in 14-days period (Up to
October 19, 2020).

Table S6: S6 StateDate 11083G>T 14days: The 11083G>T counts of 35 states in the United States in 14-days
period (Up to October 19, 2020).

Table S7: Acknowledgement table provided by GISAID in Jan 2020.

Table S8: Acknowledgement table provided by GISAID in Feb 2020.

Table S9: Acknowledgement table provided by GISAID in March 2020.

Table S10: Acknowledgement table provided by GISAID in April 2020.

Table S11: Acknowledgement table provided by GISAID in May 2020.

Table S12: Acknowledgement table provided by GISAID in June 2020.

Table S13: Acknowledgement table provided by GISAID in July 2020.

Table S14: Acknowledgement table provided by GISAID in August 2020.

Table S15: Acknowledgement table provided by GISAID in September 2020.

Table S16: Acknowledgement table provided by GISAID in October 2020.

S4 Supplementary Figures

Total 105 figures are compressed in the Supporting Figures.zip. 73 figures are the bar plots in 73 countries
which show the number of counts having L37F mutation counts and the other counts without L37F muta-
tion. Each bar width covers a 10-day period. The other 32 figures are the bar plots of 32 states in the United
States.
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